# **Open-Source Prototyping of 5G Wireless Systems for Smart Ag, Autonomous Vehicles and Beyond** sdmay 19-04

Anthony Benson, Hye-Sung Moon, Jaime Zetina, Jared Gorton, Khanh Luu, Theodore Miller Client: Dr. Hongwei Zhang

Adviser: Dr. Hongwei Zhang

#### Problem Statement

Current wireless network technology does not provide a suitable environment to support reliable Vehicle to Vehicle (V2V) communication given the complexities of uncertainty and the dynamics of a mobile network.

#### Solution

Geometric Cellular Scheduling (GCS) is a scheduling algorithm that will use a vehicle's geographical location to schedule communication between itself and other vehicles that may fall in its interference area for reduced interference and predictable reliability.

### Design Analysis

| 🔍 🌉 🔐 🔛 🛛 real world 🛛 🚽 🌘 | <b>)</b> 🖸    |         |          |           |
|----------------------------|---------------|---------|----------|-----------|
| tehicle:61 Parameter       |               | -       |          |           |
| Name                       | Value         | Dynamic | <b>_</b> |           |
| lane [id]                  | 187495028#4_1 | ×       |          |           |
| position [m]               | 116.43        | *       |          |           |
| speed [m/s]                | 5.01          | *       |          |           |
| angle [degree]             | 90.11         | ×       |          | l ( p l . |
| time gap [s]               | 1.19          | ×       |          |           |
| waiting time [s]           | 0.00          | ×       |          |           |
| impatience                 | 0.00          | *       |          | 별         |
| last lane change [s]       | 26.25         |         |          |           |
| desired depart [s]         | 61.00         | ×       |          | -#        |
| depart delay [s]           | 0.00          |         |          |           |
| remaining [#]              | 0             |         |          | I         |
| stop info                  |               | ×       | - I      | ·         |

- Iowa State Campus map on SUMO.
- Extracted vehicle data (speed, location, and acceleration)

## Simulation of Urban Mobility (SUMO)

- An open source simulator from the Institute of Transportation Systems at the German Aerospace Center.
- Generating real-road conditions and vehicle's data (location, speed, etc).

## OpenAirInterface (OAI)

 Open source software and hardware development for the core network (EPC), access network and user equipment (EUTRAN) of 3GPP cellular networks.



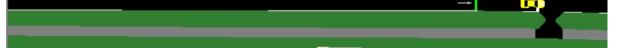
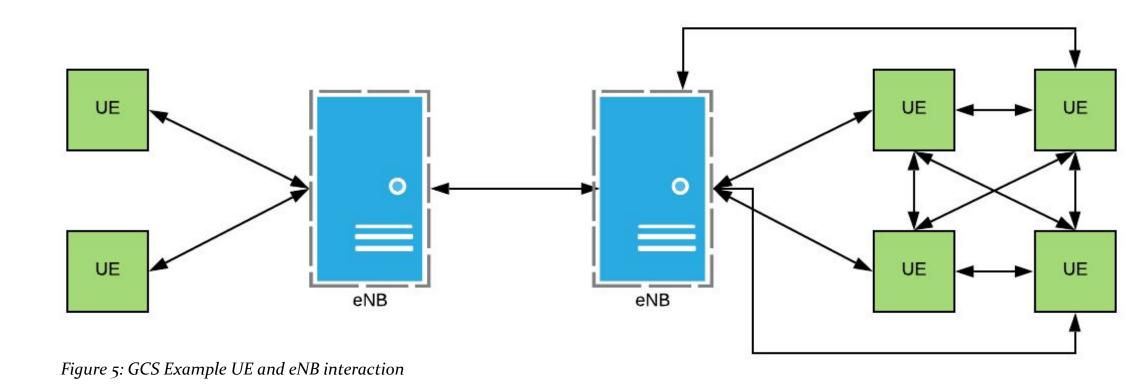
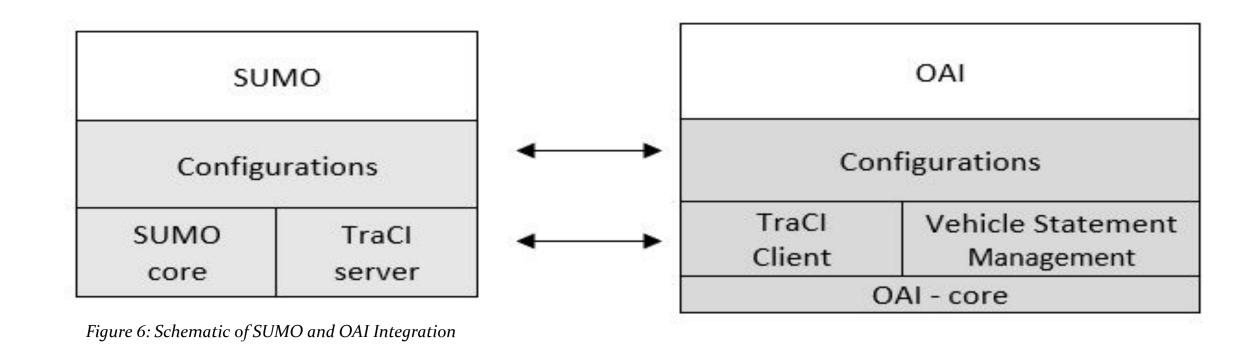





Figure 4: Iowa State Campus on Sumo and Data Extraction



• Example of the interaction between UEs and eNBs necessary for the GCS algorithm to function correctly.



- Integration of SUMO and OAI to simulate real world movement of smart vehicles.
- Client sub-system of OAI connects to the SUMO TraCI server to



Figure 2. OAI simulation, One User Equipment and one Base Station.



#### Functional Requirements

• Interference Identification Mark nodes with the potential to interfere in communications and correctly control simulation and retrieve vehicle information at each time step.

# Testing

#### Testing Environment

| Туре                     | OS                 | Kernel          | OAI Version | SUMO Version |
|--------------------------|--------------------|-----------------|-------------|--------------|
| Linux Virtual<br>Machine | Ubuntu<br>16.04.02 | Low-Latency 4.8 | 1.0.0       | 0.25.0       |

#### Table 1: Testing Environment

Testing Strategy

| OAI Stress           | Number of UEs                                                                                  | 2                               |  |
|----------------------|------------------------------------------------------------------------------------------------|---------------------------------|--|
| Testing              | Number of eNBs                                                                                 | 1                               |  |
| SUMO                 | Number of Vehicles                                                                             | 3600                            |  |
| Simulation Testing   | Testing Area                                                                                   | Iowa State Campus               |  |
| GCS a_ACC            | Tested without Kalman Filter.<br>Outputs expected results as defined by the algorithm formulas |                                 |  |
| GCS<br>Approximation | Outputs similar latitude and                                                                   | d longitude to future SUMO data |  |

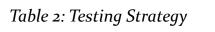
schedule these nodes with respect to time and frequency such that they will not cause any interference.

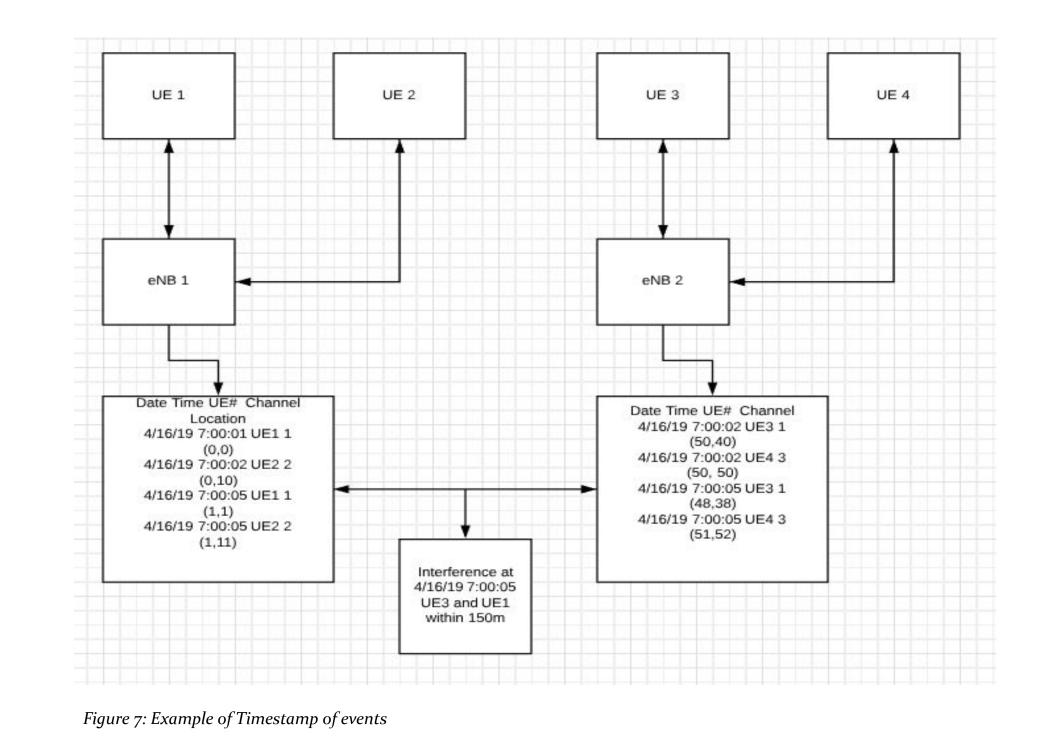
### Non-Functional Requirements

• Reliability

Ratio of data packets sent to data packets successfully received with an expected rate as high as 90%.

• Latency


Expect the latency to be at 4G capability.


• Concurrency

Number of simultaneous non-interfering transmissions successfully transmitted in the same time slot.

• Throughput

The rate of successful packets transmission with respect to time.



